Hilft Sport gegen Alzheimer?

Alzheimer – die gefürchtete Krankheit lässt Nervenzellen im Hirn absterben, kappt ihre Verbindungen untereinander und führt schließlich ins “Große Vergessen”. Die gute Nachricht: Wer regelmäßig Sport macht, kann den Beginn der Krankheit hinauszögern und ihren Verlauf abbremsen. Warum das so ist, wissen Forscher jetzt ein klein wenig besser. Sie wollen dieses Wissen nutzen, um neue Therapien zu finden.

Sportliche Menschen bekommen im Schnitt fast zehn Jahre später Alzheimer als unsportliche. Schon das alleine sollte jeden aufs Fahrrad jagen (oder in die Laufschuhe). Für Sportmuffel gibt es jedoch auch ein wenig Hoffnung: Wissenschaftler versuchen, den Effekt eines gesunden Lebensstils durch Medikamente nachzuahmen und können einen Erfolg verbuchen.

Wie hilft Bewegung dem Gehirn?

Bisher wusste man zwar, dass körperliche Betätigung gut ist gegen Alzheimer, aber nicht warum. Forscher aus verschiedenen Instituten in den USA haben die Ursache dieses Phänomens erforscht und folgendes herausgefunden:

  1. Sport regt die Bildung neuer Nervernzellen an.
  2. Er erhöht die Anzahl der Verbindungen zwischen Nervenzellen (Synapsen).
  3. Außerdem hält er den Blutkreislauf gesund  – das ist wichtig für die Sauerstoffversorgung des Gehrins.
  4. Und er erhöht den Gehalt eines Proteins namens brain-derived neurotrophic factor (BDNF).

Und genau dieses BDNF ist der Knackpunkt. Es sorgt nämlich dafür, dass Nervenzellen im Gehirn länger überleben. Denn als die Wissenschaftler Mäusen mit Alzheimer nur ein Präparat gaben, wodurch die Mäuse mehr Nervenzellen im Gehirn bildeten, verbesserte sich ihr Gedächtnis nicht. Zusammen mit BDNF aber linderten sich die Symptome von Alzheimer in Mäusen. Das berichten die Forscher in einer gemeinsamen Studie in der Zeitschrift Science. Ihre Ergebnisse machen Hoffnung, dass man in (ferner) Zukunft vielleicht ein Medikament gegen Alzheimer entwickeln kann. Allerdings wurde diese Studie in Mäusen angefertigt und Ergebnisse aus Tiermodellen sind nicht immer ohne Weiteres auf den Menschen übertragbar. Und selbst wenn es in diesem Fall so ist – diese Studie ist nur ein erster Hinweis, es muss noch viel mehr geforscht werden.

Sport ist die beste Medizin

Wer jetzt denkt, “Na gut, dann mache ich halt Sport, wenn ich älter werde”, den muss ich leider enttäuschen: Je später man anfängt, desto weniger nützt es. Das Gehirn von Menschen, die bereits Alzheimer haben, profitiert gar nicht mehr von Bewegung (Ihnen könnte jedoch irgendwann das eben erwähnte Medikament helfen).

Ein Medikament – falls und wenn es irgendwann erhältlich ist – löst übrigens auch nicht alles. Denn wer sich nicht bewegt, hat bekanntlich mehr Probleme als nur Alzheimer. Herz-Kreislauf-Erkrankungen bringen Dich um, bevor Du überhaupt alt genug bist, um dement zu werden.

Also hopp, hopp, Sportklamotten an und los geht’s!

 

Die Original-Studie: Choi, et al.: Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 2018 (leider nur für Abonnenten)

Ein frei zugänglicher Artikel zur Studie (auf englisch): How does exercise keep your brain young? | Science

 

 

Affen, die Gedanken lesen

Streiche spielen – eine beliebte Beschäftigung bei Kindern. Zum Beispiel Sachen verstecken, die den Eltern irgendwie wichtig zu sein scheinen (Geldbörse, Autoschlüssel, sich selbst) und sich dann einen abfreuen, wenn die Eltern panisch danach suchen: “Hier hatte ich es doch hingelegt!” So nervig solche Situationen sein können – man sollte doch die Leistung des kindlichen Gehirns würdigen, die dahintersteckt. Um jemandem einen Streich zu spielen, muss man sich nämlich in ihn hineinversetzen können – die Welt durch die Augen des anderen sehen, um vorhersagen zu können, dass derjenige eine amüsante Reaktion zeigen wird. Nur sehr wenige Tiere können sich in ihr Gegenüber hineinversetzten – wir Menschen gehören dazu, aber auch viele Affen.

In dem Versuch, der in diesem Video der Wissenschaftszeitschrift Science gezeigt wird, beobachten verschiedene Menschenaffen (Schimpansen, Orang-Utans und Bonobos) eine Szene, die von Menschen gespielt wird. Dabei verfolgen Wissenschaftler die Augenbewegungen der Affen, um zu sehen, wo sie während der Szene hinschauen. Damit die Tiere dabei ihren Kopf möglichst stillhalten, ist direkt vor ihnen ein Trinkhalm installiert, aus dem Orangensaft tröpfelt.

Eine der Szenen läuft wie folgt ab: Ein Mensch hat einen Pflasterstein, im Raum liegen außerdem zwei umgestülpte Kartons. Ein als Affe verkleideter Mensch kommt hinzu und ist sehr aufgeregt über den Stein (dieser Part ist wohl dazu da, dem beobachtenden Menschenaffen klarzumachen, das der Stein sehr wichtig ist – so wie die Geldbörse für Papa wichtig ist, und daher ein attraktives “Streichspielobjekt”). Dann versteckt der Verkleidete den Stein im Beisein des Menschen unter dem linken Karton. Der Mensch verlässt den Raum – woraufhin der Verkleidete den Stein erst unter den rechten Karton legt, dann ganz wegnimmt und den Raum verlässt. Der Mensch kommt zurück, um den Stein zu holen, und nun passiert etwas interessantes: Der beobachtende Menschenaffe schaut zum linken Karton, wo der Stein ja nicht mehr ist. Daraus schließen die Wissenschaftler, dass der Affe sich in die Perspektive des Menschen hineinversetzen kann. Denn obwohl der Menschenaffe weiß, dass es das falsche Versteck ist, nimmt er an, dass der Mensch dort nachsieht – der weiß es schließlich nicht besser.

Auch andere Primaten zeigen eine gewisse Fähigkeit, die Gedanken ihrer Artgenossen nachzuvollziehen. In diesem Video aus der Doku “Clever Monkeys” des britischen Senders BBC nutzt ein Kapuzineraffe den Alarmschrei, der seine Kollegen eigenltich vor Fressfeinden warnen soll, um sie alle in die Flucht zu jagen – und dann das beste Futter für sich alleine zu haben. Dank der strengen Hierarchien bei Kapuzineraffen wird ihm das nämlich normalerweise von Ranghöheren abgenommen. (Der Sprecher in dieser Doku ist übrigens einer meiner persönlichen Helden: David Attenborough, ein britischer Naturforscher, der seit vielen Jahrzehnten an wundervollen und informativen Naturdokumentationen mitwirkt. In Deutschland werden die meist im ZDF ausgestrahlt, allerdings natürlich mit einem Synchronsprecher.)

Vor einigen Jahren habe ich eine deutsche Doku über die kindliche Gehirnentwicklung gesehen, wo ein ähnliches Experiment mit Kindern verschiedenen Alters durchgeführt wurde: Im Beisein des Kindes und seiner Mutter wurde ein Malstift in einem Karton versteckt. Dann verließ die Mutter den Raum und der Versuchsleiter nahm den Stift aus dem Karton und versteckte ihn woanders. Das Kind sah das. Der Versuchsleiter fragte dann das Kind, wo Mama den Stift suchen würde, wenn sie wieder hineinkam. Kinder über vier Jahre sagten, sie würde im Karton suchen, wo die den Stift ja zuletzt gesehen hatte. Jüngere Kinder aber glaubten, sie würde im zweiten Versteck suchen – sie konnten sich noch nicht in die Perspektive ihre Mutter hineinversetzen. (Leider weiß ich nicht mehr, wie diese Sendung hieß und finde auch das Video nicht.)

Wenn eure Kiddies sich also gegenseitig mit der Sandkastenschaufel verkloppen, liegt es nicht daran, dass sie kleine Teufelsbratzen sind. Ihr Gehirn hat schlichtweg die Verbindungen noch nicht geknüpft, die dafür zuständig sind, die Welt durch die Augen des Gegenübers zu sehen.

 

Nobler Griff ins Klo

medailleDie Verkündung der Nobelpreise 2016 ist durch. Dieses Jahr wurden Forschungsthemen geehrt, die die Menschheit vielleicht nicht viel, aber doch ein bisschen weiterbringen – solide und skandalfrei. Das war schon mal anders. Hier sind ein paar Erkenntnisse und Menschen, deren Auszeichnung mit dem wichtigsten Wissenschaftspreis inzwischen umstritten ist.

Es gab zum Beispiel einige Nobelpreise für Erkenntnisse, die sich später als falsch herausstellten. Johannes Fibiger etwa gewann 1926 für die Entdeckung des winzigen parasitischen Rundwurmes Spiroptera carcinoma, der laut Fibiger Krebs auslöste. In seinen Experimenten fütterte er Ratten mit Kakerlaken, die mit dem Wurm infiziert waren. Die Ratten entwickelten Darmtumore. Wie sich später herausstellte, war daran aber nicht direkt der Parasit Schuld – die Ratten litten aufgrund des einseitigen Futters an einem Vitamin A-Mangel, der die Darmzellen extrem empfindlich machte. Der Parasit reizte die Zellen dann so sehr, dass sie sich zu Krebszellen entwickelten – jeder Reiz hätte also Krebs ausgelöst. Der Wurm wurde inzwischen umbenannt in Gongylonema neoplasticum. Fibiger war aber nicht komplett auf dem Holzweg – es gibt durchaus parasitische Würmer, die Krebs verursachen können. Fibiger ist übrigens ironischerweise an Darmkrebs gestorben.

Die Leukotomie des zwölfjährigen Howard Dully. Für die Operation wird ein Metallstab oberhalb des Augapfels ins Gehirn gehämmert und dort mehrmals kräftig hin und herbewegt, um das Gewebe zu zerstören. Die ganze Sache dauert nur zehn Minuten. (Bild: George Washington University Gelman Library)

Manchmal wurden auch Dinge geehrt, die heutzutage ethisch gar nicht mehr gehen. 1949 erhielt António Egas Moniz den Nobelpreis für die Technik der präfrontalen Leukotomie. Dabei wurden die Nervenverbindungen getrennt, die den präfrontalen Kortex an den Rest des Gehirns koppeln. Das sollte Menschen mit schweren psychiatrischen Erkrankungen wie manischer Depression oder Schizophrenie heilen. Wenn man bedenkt, dass es damals keine Medikamente gegen psychische Störungen gab, kann man es noch nachvollziehen, dass solche Operationen durchgeführt wurden. Es gibt tatsächlich einige Fälle, in denen die Leukotomie das Befinden des Patienten deutlich besserte. Moniz nutzte als Testobjekte allerdings Frauen in einem „Irrenhaus“, wie es damals noch hieß, in Lissabon. Die hatten keine Chance, die Operation abzulehnen, sie wurden vermutlich nicht wirklich gefragt. Der präfrontale Kortex ist unter anderem zuständig für die emotionale Bewertung der Umwelt – nicht verwunderlich also, dass die Patienten nach der OP zu emotionalen Zombies wurden. Fraglich ist auch, ob die Leukotomie immer notwendig war. Sie wurde in großem Stil an „hysterischen“ Frauen, Homosexuellen und sogar Kindern durchgeführt. Der jüngste Patient war 12 Jahre alt. Seine Stiefmutter wollte, dass er eine Leukotomie erhielt, da er sich manchmal weigerte, ins Bett zu gehen und öfter tagträumte.

File:Esther Lab.jpg

Esther Lederberg im Labor an der Stanford University

Ein häufiges Symptom männlicher Nobelpreisträger – und des Nobelpreiskommittees – ist die fröhliche Ignoranz gegenüber Frauen, die die mit dem Preis ausgezeichnete Arbeit wesentlich vorangebracht haben. Joshua Lederberg beispielsweise erhielt den Nobelpreis für seine Entdeckungen von Viren, die Bakterienzellen infizieren. Solche Viren nennt man „Phagen“, und der von Lederberg entdeckte erhielt den Namen „Lambda“ (λ) – und Lederberg den Nobelpreis. Blöd nur, dass seine Frau Esther Lederberg den Phagen eigentlich entdeckt, erstmals isoliert und beschrieben hatte. Joshua aber bekam dafür den Nobelpreis und erwähnte seine Frau genau einmal in seiner Nobelpreisvorlesung. (In der deutschen Wikipedia gibt es nicht einmal einen Artikel über Esther Lederberg!)

Rosalind Franklin 2 photo dna.jpg

Das Röntgenbeugungsbild der DNA-Doppelhelix von Rosalind Franklin

James Watson und Francis Crick, die 1962 gemeinsam mit Maurice Wilkins den Nobelpreis für die Aufklärung der Doppelhelix-Struktur der DNA bekamen, drückten sich komplett darum, ihre Kollegin Rosalind Franklin zu erwähnen. Sie hatte die Experimente entwickelt und durchgeführt, die letztlich die Aufklärung der DNA-Struktur zur Folge hatten. Anhand dieser Daten hatte sie selbst die Struktur beinahe vollständig aufgeklärt. Watson und Crick hatten wohl ohne Franklins Wissen Einsicht in ihre Ergebnisse. In ihrer Nobelpreisrede erwähnten die Herren Rosalind Franklin gar nicht. James Watson wunderte sich in seiner Erzählung „Die Doppelhelix“ nur darüber, dass Franklin sich so unweiblich kleidete und kein Make-Up benutzte. Naja, derselbe Typ hat ein paar Jahrzehnte später einige extrem fragwürdige Aussagen über den Zusammenhang zwischen Rasse und Intelligenz gemacht und dann seine Nobelpreismedaille verkauft, weil er im Zuge des politischen Skandals seinen Job verloren hatte.

Vielleicht hat das Nobelpreiskomitee darum dieses Jahr nur Erkenntnisse geehrt, die schon einige Jahrzehnte alt sind. Da ist die Wahrscheinlichkeit gering, dass sich über die ausgezeichneten Arbeiten jetzt noch jemand aufregt. Nummer Sicher.

Von der Schrotflinte zum Präzisionsgewehr (mit Laser und Zielfernrohr)

CRISPR-Cas9Morgen wird verkündet, wer den Nobelpreis für Chemie bekommt. Und CRISPR-Cas9, die “Genschere” steht ganz hoch im Kurs. Aber was hat es damit auf sich – und warum verdient die Technik einen Nobelpreis?

Mit CRISPR-Cas9 können Wissenschaftler erstmals ganz gezielt und mit hoher Erfolgsrate Mutationen herstellen. Warum wollen wir das? Beim Wort “Mutation” denkt man ja meist erstmal an Monster oder die X-Men oder sowas. Mutationen sind aber meist ganz unspektulär: Es sind schlichtweg Veränderungen in Genen, die mal gute, mal schlechte, mal gar keine Effekte auf den Körper haben. Ist ein Gen mutiert, so funktioniert das Protein, dessen Bauplan in dem Gen gespeichert ist, nämlich möglicherweise anders oder gar nicht mehr. Im Labor macht man sich darum Mutationen zu Nutze, um die Funktion eines Gens herauszufinden. Man schaltet das Gen also aus und schaut dann, was im Organismus nicht mehr funktioniert. Daraus kann man dann Rückschlüsse auf die Funktion des Gens und des von ihm codierten Proteins schließen. Im Prinzip kann man sich diese Vorgehensweise vorstellen wie eine Maschine, bei der man ein Teil ausbaut und dann guckt, was an der Maschine nicht mehr funktioniert.

Gene sind allerdings ziemlich klein und darum sehr schwierig “auszubauen”. In der Vergangenheit war das ein größeres Problem – es war praktisch unmöglich, ein bestimmtes Gen gezielt auszuschalten. Begeben wir uns also auf eine kleine Zeitreise:

Ab den 1920er Jahren – die Schrotschuss-Methode

Flinte: Ve1wab, Creative Commons License CC BY-SA 4.0

 

Damals haben Wissenschaftler Zellen mit mutagenen (=Mutationen erzeugenden) Chemikalien oder UV-Licht behandelt und gehofft, dass dabei ein interessantes Gen beschädigt wird. Das ist so ähnlich, als ob man aus einer Dosenpyramide genau eine Dose herausschießen will, aber leider nur ein Schrotgewehr zur Verfügung hat. Dementsprechend dauerte es oft Jahre, ehe man eine interessante Mutation erzeugt hatte. Es ging aber auch gar nicht anders, denn man wusste damals noch nicht, welche oder wieviele Gene das Lebewesen, mit dem man da als Wissenschaftler arbeitete, überhaupt hatte. Von der vollständigen DNA-Sequenz des Lebewesens konnte man nur träumen – die Struktur der DNA war ja nicht einmal bekannt. Man wusste gerade eben, dass Gene existierten und dass sie erbliche Eigenschaften von Lebewesen bestimmen. Das wars. Wenn man also die Dosenpyramide nicht sieht, kann man eben einfach nur in die ungefähre Richtung schießen und das beste hoffen.

Ab den 1980er Jahren – der Federball

Der Federball
Später konnte man dann etwas gezielter vorgehen, mithilfe der “homologen Rekombination”, die funktioniert so (siehe auch Abbildung weiter unten): Forscher stellen ein relativ kurzes Stück DNA her, das dem Gen, das sie mutieren wollen, vollkommen gleicht – mit einem wichtigen Unterschied: Es enthält die Mutation, die die Forscher in dem gewünschten Gen erzeugen wollen. Entscheidend sind die sogenannten “Homologie-Arme”. Dort ist die Sequenz der hergestellten DNA exakt dieselbe wie im ursprünglichen (“Wildtyp”-)Gen, das sich in der DNA der Zelle oder des Lebewesens befindet, das die Wissenschaftler erforschen. So kann man also ganz gezielt entscheiden, wo die Mutation stattfinden und wie sie aussehen soll. Die hergestellte DNA mit der gewünschten Mutation bringen die Forscher nun in die Zelle oder das Lebewesen ein. Mit den Homologie-Armen kann die hinzugefügte DNA in die Wildtyp-DNA eindringen und einen der beiden ursprünglichen DNA-Stränge verdrängen. Der Vorgang heißt dementsprechend auch “Strang-Invasion”. Der verdrängte, ursprüngliche Strang wird abgebaut und der noch vorhandene Wildtyp-Strang wird so verändert, dass er nun zu dem mutierten Strang passt. Voilà, die Mutante ist perfekt.

die homologe Rekombination

Wenn es denn klappen würde. Dass der hergestellte Strang tatsächlich in die Wildtyp-DNA eindringt, ist nicht gesagt. Wenn man richtig viel Glück hat, klappt es nach 200 Versuchen – mit Pech allerdings erst nach 100.000 Versuchen. Warum ich es “Federball” nenne? Mit einem Federball kann man ziemlich gezielt auf eine bestimmte Dose werfen, aber der Federball ist auch so leicht, dass er die Dose oftmals nicht umschmeißt.

Seit 2015: Das High-Tech-Präzisionsgewehr

Gewehr: Tactical Operations Inc., Creative Commons License CC BY-SA 4.0

Nun gibt es endlich eine Lösung für fast alle Mutagenese-Probleme: CRISPR-Cas9. Und das hat sich die Natur ganz alleine ausgedacht. Es ist eigentlich das “Immunsystem” bestimmter Bakterien. Die erkennen eindringende Viren und haben ein Enzym, nämlich Cas9, mit dem sie die DNA des Eindringlings kurzerhand zerschneiden. Wie erkennen sie den Eindringling? Dafür gibt es bestimmte kurze RNAs in den Bakterienzellen, die dieselbe Sequenz habe wie die DNA des Virus. Die kurze RNA lagert sich an die Viren-DNA an. Sie hat außerdem ein “Schwänzchen”, das dann Cas9 anlockt. Schließlich schneidet Cas9 die von der kurzen RNA markierte Viren-DNA einfach kaputt. Aufgrund ihrer Eigenschaft, Cas9 zu seinem Einsatzort zu leiten, wurde diese RNA “short guide RNA”, kurz sgRNA genannt. Und dieses System aus sgRNA und DNA-Schneideenzym hat man schlichtweg für die Anwendung im Labor angepasst. Die sgRNA kann man so gestalten, das sie eine beliebige, genau definierte Stelle in der DNA jedes beliebigen Lebewesens erkennt und Cas9 dorthin dirigiert. Cas9 schneidet dann dort die DNA kaputt. Darauf reagiert die Zelle, indem sie die DNA repariert, allerdings fast immer ungenau. Bei dieser Reparatur werden entweder ein paar Basenpaare der DNA  gelöscht oder einige hinzugefügt – es entsteht also eine Mutation genau da, wo man sie haben will. Im Idealfall mit einer Erfolgsrate von 100 %. Doch CRISPR-Cas9 kann noch mehr: Es erhöht die Erfolgsrate der homologen Rekombination nämlich extrem. Die Zelle ist viel eher geneigt, eine von außen zugegebene DNA einzubauen, wenn die entsprechenden Stelle in der Wildtyp-DNA kaputt ist. So kann man die DNA also gezielt aufschneiden und der Zelle auch gleich eine Vorlage für die Reparatur anbieten, die sie meist dankbar annimmt. Auf diese Weise kann man lange DNA-Abschnitte, sogar ganz neue Gene in Zellen einbringen.

Die Anwendungsmöglichkeiten sind gewaltig – im Labor lassen sich die Aufgaben von Genen und Proteinen viel schneller erforschen und in der Biotechnolgie kann man Bakterien genetisch so verändern, dass sie noch effizienter wichtige Stoffe wie Insulin herstellen. Eines Tages können wir die Technik vielleicht sogar in der Gentherapie einsetzen, um Krebs und andere Krankheiten zu heilen. Doch auch die Kehrseite muss man betrachten – wenn die Technik extrem viel weiterentwickelt wird, könnte man damit eines Tages Dinge genetisch verändern, die nicht unbedingt notwendig sind. Kritiker fürchten, dass wir bald “Designerbabys” herstellen. Dafür wissen wir aber noch viel, viel zu wenig darüber, wie unsere DNA funktioniert, das ist also sicherlich ferne Zukunftsmusik.

Nicht ganz so fern ist die Verkündung des Nobelpreisses – morgen wissen wir mehr. Dann wird vielleicht die spannende Frage beantwortet, wen das Nobelkommittee für die wichtigsten Wegbereiter von CRISPR-Cas9 hält, über diese Frage flogen nämlich in den letzten Monaten die Fetzen. Ich bin gespannt.

Tuberkulose, Pest und Cholera – alles eine Frage der Faltung

File:Yersinia pestis Bacteria.jpg

Der Erreger der Pest, Yersinia pestis, (gelb) auf einem Floh (violett). Raster-elektronenmikroskopische Aufnahme, nächträglich eingefärbt. (Foto: National Institute of Allergy and Infectious Diseases, USA)

Während es mit der Karriere der Pest seit dem 14. Jahrhundert rapide bergab ging, stellen Cholera und vor allem Tuberkulose die Welt noch immer vor große Probleme. Dank der vereinten Mühen von Forscherteams aus Bochum, Leipzig und Braunschweig verstehen wir jetzt besser, wie die Bakterien, die diese Krankheiten verursachen, ihren Angriff auf unser Leib und Leben starten.

Wenn es in unserem Körper demokratisch zuginge, hätten wir jeden Tag Stichwahl: Etwa 40 Billionen (eine 4 mit 13 Nullen) eigene Körperzellen besitzen wir – und etwa genausoviele Bakterien tummeln sich auf unserer Haut, unseren Schleimhäuten und im Darm. Eklig? Keineswegs! Ohne Bakterien könnten wir nicht überleben: Sie wehren Krankheitserreger ab und helfen uns bei der Nahrungsverdauung. Da sie viel kleiner sind als unsere eigenen Körperzellen, fallen sie uns (zum Glück) nicht weiter auf. Aber wehe, eine nicht so wohlmeinende Bakterienzelle dringt ein!

Zu den fiesesten Vertretern der bakteriellen Krankheitserreger gehören Yersinia pestis, Yersinia pseudotuberculosis und Vibrio cholerae – die Namen sind Programm. Die Pest weckt heutzutage höchstens noch geistige Bilder von gruseligen mittelalterlichen Gemälden – sie ist inzwischen relativ harmlos und gut behandelbar. Tuberkulose und Cholera sorgen aber nach wie vor für hohe Todeszahlen, vor allem in ärmeren Ländern mit schlechter Trinkwasserversorgung. Um diese Krankheiten bekämpfen zu können, hilft es ungemein, zu verstehen, wie die Bakterien sie auslösen.

Das haben Forscher um Franz Narberhaus von der Ruhr-Uni Bochum jetzt zumindest teilweise aufgeklärt: Yersinia pestis, Yersinia pseudotuberculosis und Vibrio cholerae enthalten “molekulare Thermometer”. Einfach gesagt sind das Moleküle, die bei kühleren Temperaturen anders aussehen als bei höheren. Dringen die Bakterien in unseren Körper ein, erwärmen sie sich schnell auf unsere Körpertemperatur, also 37 °C. Die Thermometer-Moleküle ändern daraufhin ihre Gestalt und das ist das Angriffssignal – die Pest bricht in uns aus!

Wie funktioniert das genau? Bei den Thermometer-Molekülen handelt es sich um RNA. Das sind Kopien von Genen, die auf der DNA liegen. Die Gene auf unserer DNA stellen Baupläne für Proteine dar. So ein Bauplan darf aber nicht im Original, also als Gen selbst, verwendet werden, sondern es wird eine Kopie gemacht, eben die RNA. Der Bauplan auf der RNA wird von einem Enzym abgelesen, das nach dieser Info dann das Protein herstellt. Dabei kann eine RNA hunderte Male hintereinander abgelesen werden, um viele Exemplare eines Proteins herzustellen. Dasselbe passiert auch in den Bakterien, wenn sie Krankheiten auslösen: Die Bakterien brauchen die Proteine, die so hergestellt werden, um unseren Körper zu befallen. Die RNA für diese Proteine kann nun in zwei Zuständen vorliegen: offen und bereit für die Proteinproduktion oder zusammengefaltet und damit unzugänglich für das Enzym, das sie abliest. Und ihr habt es sicher schon erraten, bei Temperaturen um die 37 °C ist die RNA offen, bei niedrigeren Temperaturen ist sie zusammengefaltet. So wird das Bakterium erst so richtig aktiv, nachdem es in unseren Körper gelangt ist. Die Faltung erfolgt durch Verbindungen, die einzelne Wasserstoffatome innerhalb der selben RNA miteinander schließen. Bei höheren Temperaturen werden diese Verbindungen instabil und die RNA schmilzt regelrecht auf.

Die Frage aller Fragen: Kann man das für Medikamente benutzen? Zwei Antworten: “Ja” und “Noch nicht”. Prinzipiell ist es nicht schwierig, Wirkstoffe herzustellen, die das Aufschmelzen der RNA verhindern und damit die Bakterien zur Untätigkeit zwingen. Das Problem ist jedoch, diese Wirkstoffe halbwegs gezielt durch den Körper zu den Bakterien zu bringen. Und dann müssen sie ihn auch noch aufnehmen. Das ist gar nicht so einfach, eine Bakterienzelle – so wie alle Zellen aller Lebwesen – nehmen nicht einfach so irgendeinen Stoff auf, der gerade vorbeischwimmt. Er könnte ja giftig sein. Was in diesem Fall genau der Zweck wäre. Aber um herauszufinden, wie man die Bakterien so auszutricksen kann, dass die so ein Medikament aufnehmen, müssen Wissenschaftler noch ein bisschen weiterforschen. Immerhin, ein Anfang ist gemacht!

Für die Streber unter uns gibt es hier die Original-Publikation (leider nur, wenn man registriert ist): www.pnas.org/content/early/2016/06/10/1523004113.abstract
Righetti F, et al. Proc Natl Acad Sci USA. (2016 Jun 13)

Jedem Tierchen seinen Star

Wissenschaftler haben ein bisschen Hollywood in der Welt der Gliederfüßer – Spinnen, Insekten und Krebse – gebracht. Man sollte denken, dass es eine Ehre ist, wenn eine neu entdeckte Tierart nach einem benannt wird. Doch bei so manchen dieser kleinen Kreaturen fragt man sich, ob ihr unfreiwilliger Namenspate wohl so begeistert ist…

Aleiodes_shakirae_gr

Bild: commons.wikimedia.org, Lizenz CC BY-SA4.0

Die Wespe Aleiodes shakirae etwa legt ihre Eier in lebenden Raupen einer bestimmten Schmetterlingsart ab. Schlüpfen die Wespenlarven, fressen sie die Raupe von innen auf – erst die weniger lebenswichtigen Teile, sodass die Raupe noch eine Weile lebt. Kurz vor ihrem Tod wackelt die Raupe dann mit dem Unterleib hin und her. Anscheinend tut sie das derart gekonnt, dass die Entdecker sich an Shakiras Bauchtanzkünste erinnert fühlten und der Wespe, die die arme Raupe so tanzen lässt, den Namen der Sängerin verpassten.

Captia (Plinthina) beyonceae 1_th

Bild: Bryan Lessard, scienceimage.csiro.au

 

Ebenfalls für guten Gesang und ihre bemerkenswerte untere Körperhälfte bekannt ist Beyoncé. Das nach Ihr benannte Insekt kommt ihr sogar in Sachen Eleganz ein wenig nahe: Die Fliege Scaptia beyonceae hat einen golden glänzenden Hinterleib. Dessen Ausmaße waren es angeblich auch, die den Entdecker der Fliege inspirierten, sie nach Beyoncé zu benennen…

 

 

vaderi

www.wibnet.nl

Und dann wäre da noch Agathidium vaderi, ein Vertreter aus der Familie der Schwammkugelkäfer. Den Wissenschaftlern, die ihn bennenen durften, fiel sofort seine schwarzglänzende Panzerung auf. Kommt die jemandem irgendwie bekannt vor? Aus so einer Filmreihe, Ende der Siebziger, Anfang der Achtziger, mit Raumschiffen und Laserschwertern und so? Der Name “Schwammkugelkäfer” kommt übrigens daher, dass diese Käfer Pilze fressen (in einigen Landstrichen auch “Schwamme” genannt). Drei Vertreter, die sich speziell von Schleimpilzen ernähren, wurden nach amerikanischen Präsidenten benannt. Bush ist auch dabei. Strikt ehrenhalber, natürlich!

Auch Barack Obama musste seinen Namen hergeben, für die Spinne Aptostichus barackobamai. Zwei andere Spinnen derselben Gattung wurden nach dem Comedien Stephen Colbert beziehungsweise nach Angelina Jolie benannt.

Kurzer Klugscheißer-Exkurs an dieser Stelle: Die wissenschaftlichen Namen eines Tieres oder einer Pflanzen bestehen meistens aus zwei, manchmal aus drei Teilen. Der erste Teil, also zum Beispiel “Aptostichus”, bezeichnet die Gattung. Innerhalb einer Gattung kann es mehrere Arten geben, wie bei diesen Spinnen der Fall. Die einzelnen Arten kriegen dann entsprechend unterschiedliche zweite Namensteile, die dann die Spezies bezeichnen. Wenn noch ein drittes Wort dasteht, ist das die Unterart. Findet man eine neue Art, muss man sie gründlich untersuchen, meist wird auch die DNA (zumindest teilweise) sequenziert. Dadurch kann man die Art oft in eine schon bestehende Gattung einordnen und ist damit bei der Namensgebung beim ersten Wort festgelegt. Der Artname kann jedoch beliebig gewählt werden – wie hier eindrücklich demonstriert. So, Exkurs vorbei.

Die meisten tollen Tiere wurden bereits vor langer Zeit gefunden, beschrieben und benamst. Neu benannt werden darum heutzutage fast nur kleine, schwer zu findende Krabbeltierchen, über die Forscher erst jetzt stolpern. Jennifer Lopez hatte ein bisschen Pech, dass eine Gruppe Marinebiologen ihrem Album lauschte, während sie eine Ozeanmilbe beschrieben. Wer will seinen Namen schon mit einer Milbe in Verbindung bringen? Bob Marley hat es allerdings noch schlimmer erwischt – Gnathia marleyi ist ein blutsaugender, parasitisch lebender Mini-Krebs.

Hollywoods Stars sollten besser hoffen, dass demnächst eine neue Dinosaurierspezies benannt wird. Oder wenn es schon ein Insekt oder so etwas sein muss, dann doch wenigstens ein Schmetterling.

 

 

Blasen im MRT

Sprechen_MRT_ScreenshotDie Abkürzung “MRT” hat jeder bestimmt schonmal gehört. Die drei Buchstaben stehen für das Wort “Magnetresonanztomografie”.Bei einem Magnetresonanztomografen handelt es sich um eine der berüchtigten “Röhren”, in die man geschoben wird, wenn die Ärzte nicht so richtig wissen, was man hat. Anders als die Computertomografie – auch so eine “Röhre” im Krankenhaus – arbeitet die MRT nicht mit eventuell schädlicher Röntgenstrahlung, sondern mit Magnetfeldern. In der folgenden Box könnt ihr nachlesen, wie MRT funktioniert.



Box: So funktioniert MRT

Die Technik der Magnetresonanztomografie macht sich drei Eigenschaften der Wasserstoff-Atomkerne in unserem Körper zu Nutze: 1) Wasserstoff-Atome kommen in jedem unserer Organe vor. 2) Wasserstoff-Atomkerne drehen sich um sich selbst, wie ein Kreisel. Das nennet man “Spin” oder auch “Kernspin”. 3) Durch diesen Spin haben Wasserstoff-Atomkerne ein kleines Magentfeld um sich herum.
Wird der Körper nun einem statischen (feststehenden) Magnetfeld ausgesetzt, wie es im MRT geschieht, richten die eigenen Magnetfelder der Atomkerne sich in diesem umgebenden Magnetfeld aus. Wenn nun zusätzlich ein kurzer magnetischer Impuls gegeben wird, der eine andere Richtung als das statische Magnetfeld hat, fangen die sich drehenden Atomkerne mit ihrem winzigen Magnetfeld an zu “eiern”. Man kann es sich so vorstellen, als ob man zwei Magnete an einen Kreisel klebt, einmal mit dem Pluspol nach außen und einmal mit dem Minuspol nach außen. Man bringt den Kreisel in Drehung – das ist der Spin – und nähert sich dann ganz kurz mit einem weiteren Magneten dem Kreisel an. Die Magnete am Kreisel werden durch den sich nähernden Magneten angezogen oder abgestoßen und der Kreisel gerät kurz ins Eiern.

Abb1

Dieses “Eiern” – der korrekte Ausdruck ist “Präzession” – unserer Atomkerne verursacht eine kleine elektrische Spannung, die gemessen werden kann. Aus diesen Messungen wird schließlich das endgültige Bild errechnet. Doch wozu braucht man das statische Magentfeld, wenn der kurze magnetische Impuls das Entscheidende ist? Ganz einfach. Stellt euch vor, ihr habt viele Kreisel, die sich alle drehen. Aber die Magnete aller Kreisel sind nicht zur selben Zeit am selben Ort. Wenn ihr euch jetzt mit einem großen Magneten allen Kreiseln zugleich nähert, werden sie zwar eiern (“präzedieren”), aber alle in unterschiedliche Richtungen. Und im MRT müssen alle Atomkerne gleichzeitig kurz in dieselbe Richtung präzedieren. Durch das statische Magnetfeld werden die Magnetfelder der Atomkerne also alle gleich ausgerichtet, damit sie dann durch den hinzugegebenen kurzen magnetischen Impuls alle zur selben Zeit in dieselbe Richtung eiern.Abb2



Wenn man aus der “Röhre” wieder rauskommt, hat der Arzt ein Graustufen-Bild auf dem Computerbildschirm, das einen Schnitt durch den Körper zeigt. Dafür ist ein MRT also nützlich – es zeigt das Körperinnere, ohne, dass man unters Messer muss. Eine klassische MRT-Aufnahme dauert mehrere Sekunden. Da der Arzt viele Aufnahmen machen muss, um zu sehen, was mit einem los ist, liegt man teilweise ganz schön lange im MRT. besonders für Leute mit Klaustrophobie kann das sehr unangenehm sein. Außerdem ist das Ergebnis ein Standbild. Für manche Krankheiten und innere Verletzungen wäre es aber extrem hilfreich, wenn man im MRT Filme vom Körperinneren aufnehmen könnte, und somit dem Körper quasi “live” bei der Arbeit zuschauen könnte.

Jens Frahm, Forschungsgruppenleiter am Max-Planck-Institut für biophysikalische Chemie in Göttingen, hat bereits in den Achtigzerjahren des letzten Jahrhunderts eine Methode entwickelt, mit der MRT-Aufnahmen 100 mal schneller gemacht werden können, genannt FLASH. Bevor der Physiker und sein Team diese Technik entwickelt hatten, dauerte eine Aufnahme so lange, dass man das MRT im Krankenhaus nicht benutzen konnte.

In den Jahrzehnten, die seitdem vergangen sind, haben Jens Frahm und seine Arbeitsgruppe diese Technik so weit vorangetrieben, dass eine Aufnahme jetzt sogar nur noch 20 bis 30 Millisekunden dauert, das ist schnell genug für einen Film. Der Traum von der Liveschaltung ins Körperinnere ist also wahr geworden. Und die Videos, die Jens Frahm und andere Wissenschaftler und Ärzte mit dieser Technik aufgenommen haben, sind nicht nur aufschlussreich, sondern teilweise auch ziemlich skurril.

So sieht zum Beispiel ein Längsschnitt durch den Kopf eines sprechenden Menschen aus (am Ende leckt der Proband sich die Lippen und schluckt):

Das große, weiße Ding im Zentrum des Bildes ist übrigens die Zunge. Falls jemand herausfindet (oder einfach nur eine Idee hat), was derjenige sagt, freue ich mich über einen Kommentar unter diesem Beitrag!

Auch Filme vom Schluckvorgang wurden bereits aufgenommen; vor allem davon, was im Körper passiert, wenn ein Schluck von der Speiseröhre in den Magen übergeht. Die so gewonnen Erkenntnisse sollen helfen, die Ursachen für das Volksleiden Sodbrennen zu klären. Die Gründe können recht unterschiedlich sein, darum ist es von immensem Vorteil, wenn jeder Patient eine individuelle Diagnose und entsprechende Behandlung bekommt – Echtzeit-MRT sei Dank!

Ein eher unbekanntes und deutlich weniger weit verbreitetes Leiden ist die fokale Dystonie bei Musikern. Dabei handelt es sich um ein Nervenleiden, bei dem Musiker Lähmungen in genau dem Körperteil erfahren, mit dem sie ihr Instrument spielen – und zwar nur dann, wenn sie zum Spiel ansetzen. Ein Pianist hätte also Lähmungen in Händen und Unterarmen, ein Trompeter in Lippen oder Zunge. Letzterem gingen Jens Frahm und sein Team genauer auf den Grund. Dazu luden sie einige Blechbläser – einen Trompeter, einen Posaunisten, einen Hornisten und einen Tubisten (=Tubaspieler) – ein, ihr Instrument zu spielen, während sie im Echtzeit-MRT lagen. Jeder spielte eine festgelegte Tonreihe. Da die echten Instrumente doch nicht mit in die Röhre passten, wurde den Musikern eine Plastiktröte in die Hand gedrückt. Dann wurde mithilfe der Echtzeit-Technik gefilmt, wie genau jeder Instrumentalist die Zunge bewegt, um die Tonfolge zu spielen. Dabei gab es einige Unterschiede im Timing und der Richtung der Zungenbewegung, die anhand der Bilder aus dem MRT genauestens gemessen und ausgewertet wurden. Hier habe ich ein Video vom YouTube-Kanal der Hornistin Sarah Willis eingefügt, die ihre Künste im Rahmen einer ähnlichen Studie von Jens Frahm bewiesen hat. Da kann man die Zungenbewegungen prima sehen. (Die ersten 25 Sekunden des Videos sind zwar auf englisch, aber Musik ist ja bekanntlich eine internationale Sprache)


Aber wozu das Ganze? Obwohl diese Studie ein bisschen aussieht wie ein verzeifelter Versuch, sich für den Ig Nobelpreis zu qualifizieren, hat sie doch einen sinnvollen Zweck: Kaum eine Tätigkeit erzeugt so schnelle, willkürlich verursachte Zungenbewegungen wie das Spielen eines Blasinstrumentes. Diese Studie ist also hervorragend geeignet, die Welt von den zeitlich hochaufgelösten Bildern des Echtzeit-MRT zu überzeugen. Ich hoffe zwar, dass ich oder meine Freunde und Familie nie ein MRT nötig haben, aber ich bin begeistert von dieser neuen Technik! Sie wird zur Zeit gemeinsam mit Ärzten an Patienten getestet und hält hoffentlich bald Einzug in die Krankenhäuser.

Und zum Schluss: Beatboxing im Echtzeit-MRT. Weil’s geht.
(Video der Speech Knowledge and Articulation Group (SPAN), University of Southern California (sail.usc.edu/span))

Wer weniger atmet, lebt länger

https://upload.wikimedia.org/wikipedia/commons/7/75/Nothobranchius_furzeri_GRZ.jpg

Der Türkise Pachtgrundkärpfling (Nothobranchius furzeri) commons.wikimedia.org CC BY-SA 3.0

Wissenschaftler des Jenaer Forschungskonsortiums JenAge haben herausgefunden, dass die Aktivität einiger Gene in jungen Aquarienfischen vorhersagt, wie alt diese Fische werden. Die Gene enthalten den Bauplan für eine Gruppe von Proteinen, die in der Zellatmung eine Rolle spielen. Luft anhalten hilft also leider nicht, denn die Zellatmung kann man damit auf Dauer nicht beeinflussen. Aber was ist Zellatmung?

Bevor ich das erkläre, erst einmal ein wenig über den Fisch. Unter Aquarianern ist er als Türkiser Prachtgrundkärpfling bekannt, auf Schlau heißt er Nothobranchius furzeri. Der lustige Name kommt daher, dass er von einem Forscher namens Richard Furzer entdeckt wurde (der zu seinem eigenen Glück Amerikaner war und darum in seiner Kindheit hoffentlich nicht gehänselt wurde). Das Besondere an diesem aus Afrika stammenden Fisch ist, dass er in Tümpeln und großen Pfützen lebt, die in der Regenzeit entstehen und auch recht schnell wieder austrocknen. Er muss sich darum sehr schnell entwickeln und fortpflanzen – und stirbt auch recht schnell wieder. Selbst unter Idealbedingungen im Aquarium lebt er nur etwa drei Monate, allerhöchstens wird er ein Jahr alt (das ist aber eher die Ausnahme). Und ähnlich wie viele Menschen entwickelt auch der Prachgrundkärpfling im Alter Tumore und erleidet eine Abnahme der Hirnfunktionen. Er ist also ein interessantes Modell, um Alterungsprozesse zu erforschen und vor allem herauszufinden, ob und wie Altern und  Lebensdauer genetisch festgelegt sind.

Die Fragen nach dem Ob und Wie konnten nun ein stückweit beantwortet werden, als Forscher um Alessandro Cellerino am Leibniz-Institut für Alternsforschung in Jena herausfanden, dass die Fische mit der geringsten Genaktivität für einige Zellatmungs-Proteine am ältesten wurden. Nun also zur Zellatmung:
Mit diesem Begriff bezeichnet man die Umwandlung von Zucker aus unserer Nahrung in Energie in der Zelle. Diese Energie wird in einem Molekül gespeichert, dem Adenosintriphosphat (ATP). Wird ATP von Enzymen in der Zelle benutzt, zerfällt es gewissermaßen und setzt dabei Energie frei. Ohne ATP könnten die Enzyme ihre Arbeit – den Aufbau von Strukturen in unserem Körper, den Abbau von Nährstoffen, etc. – nicht verrichten. Ist ATP einmal in seine Bestandteile zerfallen, wird es jedoch nicht nutzlos, denn durch den Verbrauch von Zucker kann es wieder “zusammengesetzt”, also recycelt werden (das Recycling von ATP ist also der Grund, weshalb wir essen müssen). So geht das immerfort, und dieser ganze Prozess heißt Zellatmung.  Das ATP-Recycling findet in speziellen Zellorganellen, den Mitochondrien statt. Was hat das alles mit Atmung zu tun? Ganz einfach – dieser Prozess benötigt Sauerstoff. ATP ist also auch noch der Grund, weshalb wir atmen müssen! Ganz schön gierig, dieses ATP! Nun ja, wir sollten ihm verzeihen, denn ohne es könnten wir nicht leben.

Für die Zellatmung benötigen die Mitochondrien viele verschiedene Proteine, die in Komplexen zusammenarbeiten. Der Bauplan für jedes dieser Proteine ist in dem für ihn spezifischen Gen gespeichert. Ist ein Gen besonders aktiv, wird der Bauplan häufig abgelesen und umgesetzt, also viel von dem jeweiligen Protein produziert.

Die Wissenschaftler im Team von Alessandro Cellerino untersuchten eine Gruppe von 45 Prachtgrundkärpflingen, indem sie kleine Gewebeprobem von ihren Schwanzflossen nahmen (die wachsen bei Fischen nach). Sie taten das einmal 10 Wochen, nachdem die Fische aus dem Ei geschlüpft waren, und noch einmal 20 Wochen danach. Dann warteten sie, bis die Fische an Altersschwäche starben. Auf Grund des Alters bei ihrem natürlichen Tod teilten die Forscher die Fische dann in drei Gruppen ein: kurzlebig, langlebig und sehr langlebig. Mithilfe der zuvor entnommenen Gewebeproben konnten sie dann nachsehen, welche Gene bei welcher Gruppe besonders hohe oder niedrige Aktivität zeigte. Dabei stellte sich heraus, dass die Gene für den oben erwähnten Atmungskomplex bei den sehr langlebigen Fischen die geringste Aktivität zeigte, bei den kurzlebigen Fischen entsprechend die höchste.

Cellerinis Team ging noch einen Schritt weiter und verabreichte einigen Fischen das Medikament Metformin, dass die Funktion dieses Atmungskomplexes in den Mitochondrien hemmt. Und die mit Metformin behandelten Fischen lebten dann auch länger. Die Alterung wird also nicht an sich durch die Aktivität der Gene beschleunigt, sondern durch die daraus resultierende größere Zahl an Atmungskomplexen.

Bisher dachte man, eine auf Hochtouren laufende Zellatmung wäre besser für die Zellen, nun stellt sich also heraus, dass eine reduzierte Zellatmung gesünder ist. Warum ist das so? Cellerino erklärt es so, dass bei einer reduzierten Zellatmung mehr freie Radikale entstehen als bei ungehemmter Zellatmung. Das scheint zunächst ein Widerspruch, denn freie Radikale zerstören Zellstrukturen. Aber eine nur leicht erhöhte Konzentration der feien Radikalen hat den Effekt, dass die Zellen mit ihnen umzugehen lernen und schneller auf Schäden reagieren. Die Zellen werden quasi gegen freie Radikale abgehärtet, was letztlich ihre Lebensdauer erhöht.

Metformin verlängert übrigens auch Mäuseleben und ist bereits als Medikament gegen Diabetes erhältlich. Aber jetzt nicht haufenweise Süßigkeiten essen, damit man irgendwann Metformin nehmen darf! Rotwein trinken ist anscheinend die bessere Lösung, denn der Stoff Resveratrol kommt darin in hoher Konzentration vor. Der hat in Versuchen mit Mäusen und Zellkulturen gezeigt, dass er lebensverlängernd und krebshemmend wirkt. Also, tief durchatmen und sich ein Gläschen gönnen!

+++ Verkaufe: Nobelpreis, gut erhalten, politisch etwas angekratzt +++

nobe_sheetlSo ein Nobelpreis auf dem Kaminsims oder gerahmt überm Sofa, das wäre doch was! Wenn da nicht dieses lästige Problem wäre, dass man einen weltbewegenden wissenschaftlichen Durchbruch machen muss… Aber man darf aufatmen, es gibt eine einfachere Lösung: Wer knapp 5 Millionen Dollar auf der hohen Kante hatte, konnte sich vergangenen November einfach einen Nobelpreis ersteigern. Und wenn man Verwandte hat, die ein bisschen hinter dem Mond leben, kann man ihnen beim nächsten Besuch vielleicht sogar weismachen, dass man vor einigen Jahrzehnten eigenhändig die Struktur der DNA aufgeklärt hat.

Dafür bekam der Biologe James Watson nämlich seinen Nobelpreis. Gemeinsam mit seinen Kollegen Francis Crick, Maurice Wilkins und Rosalind Franklin (die bei der Nobelpreisnominierung mal eben ignoriert wurde) konnte er 1953 die Struktur der DNA-Doppelhelix zeigen.

Diese wissenschaftliche Entdeckung wurde vielfach als „die wichtigste des 20. Jahrhunderts“ bezeichnet und 1962 mit dem Nobelpreis für Physiologie oder Medizin geehrt. Und doch entschied sich James Watson vergangenes Jahr dafür, das gute Stück zu verkaufen. Die anderen beiden brauchte er nicht fragen, die sind inzwischen verstorben. James Watson ist damit der einzige noch lebende Wissenschaftler, der jemals seinen Nobelpreis verkauft hat.

Wie kommt man auf so eine Idee, das Symbol für die größte Errungenschaft seines Lebens herzugeben? Er hat wohl versucht, etwas wiedergutzumachen. Im Jahre 2007 sagte er in einem Interview mit der Sunday Times, dass Afrikaner genetisch bedingt im Durchschnitt weniger intelligent seien als Europäer und fügte hinzu „Nur, weil wir gerne wollen, dass alle Menschen gleichermaßen intelligent sind, ist das nicht automatisch so.“ Da mag er Recht haben, aber der Kommentar über die Intelligenzunterschiede zwischen Europäern und Afrikanern kam gar nicht gut an. Watson musste seinen Posten als Direktor des Cold Spring Harbor Laboratory in New York räumen, den er seit 1976 innegehabt hatte. Dieser Verlust seiner Position brachte finanzielle Konsequenzen mit sich. Trotzdem hat Watson einen Teil der Erlöse aus der Versteigerung an wissenschaftliche Einrichtungen gespendet, wie die University of Chicago, wo er selbst studierte, oder das Clare College Cambridge, wo er seine bahnbrechende Entdeckung über die Struktur der DNA machte. Ob es James Watsons Ruf wieder auf die Sprünge hilft, wird sich zeigen. Schade, dass eine so große Karriere, getragen von dieser unglaublich wichtigen Entdeckung, so bitter enden muss.

Größer ist besser!

By Ahodges7 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia CommonsForscher der Abteilung Geologie und Umwelt an der amerikanischen Stanford University haben gemeinsam mit Mathematikern des Swarthmore College USA herausgefunden, dass marine Lebewesen auf unserem Planeten immer größer werden. Dazu haben sie Fossilien und maßstabsgetreue Fotos von Tieren vermessen und so die Körpergrößen von 75 % der Arten von Meerestieren die in den letzten 542 Millionen Jahren lebten ermittelt. Das ist ziemlich gründlich. Und so darf man den Forschern glauben schenken, wenn sie zu dem Schluss kommen, dass Meerestiere im Laufe der Evolution immer größer geworden sind. Die statistische Auswertung der Daten hat ergeben, dass dies kein Zufall ist, sondern gerichtete Selektion. Das heißt, dass die größeren Tiere einer bestimmten Art sich öfter fortpflanzen und die Gene für ihre Körpergröße damit öfter weitergegeben werden als die Gene für geringere Größe. Doch warum können diese Tiere sich öfter fortpflanzen? Noel A. Heim und seine Kollegen, die diese Ergebnisse heute in der Zeitschrift Science veröffentlicht haben, führen es darauf zurück, dass größere Tiere zum einen erfolgreicher sind bei der Nahrungssuche und der Partnerwerbung, weil sie schlicht stärker sind als ihre kleineren Artgenossen. Eine größere Rolle scheint jedoch zu spielen, dass größere Tiere weiter schwimmen können und daher Nahrung und Partner in einem größeren Umkreis finden. Und noch etwas: Vielleicht ist dem einen oder anderen gerade schon durch den Kopf gegangen, dass die meisten größten Meerestiere Säugetiere sind – Wale, Walrosse und Seekühe zum Beispiel. Sie alle müssen auftauchen um Luft zu holen. Das scheint zunächst ein Nachteil zu sein, doch der Sauerstoffgehalt der Luft ist etwa 25 mal höher als der im Wasser, Luft „fließt“ viel schneller als Wasser durch die Atmungsorgane und die Aufnahme des Sauerstoffs ins Blut aus der Luft ist 300.000 mal schneller als aus dem Wasser. Dreihunderttausend! Das macht den Stoffwechsel eines Luftatmers viel effizienter als den eines Wasseratmers und gibt marinen Säugetieren damit die Möglichkeit, sehr groß zu werden.

Menschen sind im Laufe der Jahrtausende auch immer größer geworden. Ob das daran liegt, dass wir Luft atmen? Wohl eher daran, dass wir Supermärkte haben und unser Essen nicht selbst fangen müssen 😉