Category: Mikrobiologie

Pilze – wollen sie uns alle umbringen?

Ist es eine Pflanze? Ist es ein Tier? Nein, es ist ein Pilz!
Pilze bilden eine Gruppe ganz für sich, auch wenn viele denken, es seien Pflanzen. Manchmal sind Pilze nett und helfen im Waldboden bei der Zersetzung von totem Material, womit dem natürlichen Kreislauf wieder Nährstoffe zugeführt werden. Oft aber haben sie es auf die totale Herrschaft abgesehen. Sie dringen in Pflanzen und Tiere ein und toben sich dort aus – nicht selten ohne Rücksicht auf das Leben ihres Wirtes. So gibt es eine parasitische Pilzart, die Insekten zu willenlosen Zombies macht. Einige Pilze wachsen sogar in Menschen.

Pilze, das sind doch die lustigen Dinger mit Stiel und Hut, die romantisch im Wald rumstehen und deren Daseinszweck darin besteht, von Touristen in knallbunten Regenjacken in die Pfanne gehauen zu werden, oder? Ähm, nein. Pilze sind oft miese kleine Parasiten, die nur sich selbst dienen. Und in den seltensten Fällen sind sie so freundlich, sich als Abendessen zu eignen. Aber fangen wir erst einmal mit den nützlichen Pilzen an.

Geneigte Pilzsammler werden wissen, dass bestimmte Pilze bevorzugt unter ausgesuchten Bäumen wachsen – der Birkenpilz unter Birken, der Steinpilz unter anderem in der Nähe von Fichten, und so weiter. Das liegt an einer uralten Partnerschaft zwischen Pflanzen und Pilzen, der sogenannten „Mykorrhiza“. Das Wort setzt sich zusammen aus den griechischen Wörtern mykos (Pilz) und rhiza (Wurzel). Dabei geht eine Pilzart eine unterirdische Verbindung mit der Pflanzenwurzel ein. Aber nicht nur Bäume haben solche Pilzpartner – etwa 80 % aller Landpflanzen haben so eine Mykorrhiza. Doch wozu brauchen Pflanzen Pilze – und umgekehrt?

Eine Mykorrhiza ist eine sogenannte Symbiose, eine enge Partnerschaft zwischen zwei unterschiedlichen Lebewesen, die beiden Vorteile bringt. Die Pflanze erhält vom Pilz Mineralstoffe wie Stickstoff und Phosphor, die im Boden in Verbindungen vorliegen, die nur der Pilz aufschließen und verarbeiten kann. Im Gegenzug erhält der Pilz von der Pflanze Nährstoffe in Form von Zuckern. Wie tauschen die beiden sich aus? Nun, Pilze bestehen nicht nur aus einem Stiel und einem Hut, ganz im Gegenteil. Dieser Teil beherbergt lediglich die Fortpflanzungsorgane. Das ist richtig, wir essen die Geschlechtsorgane von Pilzen. (Kriegt euch wieder ein, es schreit ja auch keiner „Iiiiih, Geschlechtsorgane!“, wenn er eine Blume sieht.) Der eigentliche „Körper“ des Pilzes ist ein weit verzweigtes unterirdisches Netz von sehr, sehr dünnen Fäden, für das bloße Auge praktisch unsichtbar. Dieses Netz heißt „Myzel“ (das spricht man „Mühzeel“), ein einzelner Faden ist eine „Hyphe“ (das wird wie „Hüfe“ ausgesprochen).

Die Hyphen wachsen unter der Erde vor sich hin, bis sie auf eine geeignete Pflanzenwurzel treffen. Die Pflanze sendet sogar chemische Stoffe aus, um die Pilzhyphen anzulocken. Hat eine Hyphe Kontakt zu einer Wurzel aufgenommen, bildet sie eine spezielle Struktur, mit der sie sich durch die Außenwand der Wurzel bohrt. Dazu kann die Hyphe an der Kontaktstelle einen unglaublich hohen Druck aufbauen. Experimente habe gezeigt, dass dieser Druck bis zu 100 bar betragen kann. Zum Vergleich: In einem Autoreifen herrscht ein Luftdruck von 2 bis 2,5 bar, ein richtig knallhart aufgepumpter Rennradreifen kann es schon mal auf 10 bar bringen. Immer noch kein Vergleich zum Pilz! Der baut diesen Druck jedoch nur an einem mikroskopisch kleinen Punkt auf. Das reicht aber locker, um sich in die Pflanzenwurzel zu bohren. Zusätzlich sind außerdem Enzyme im Einsatz, die die Zellwände der Pflanzenwurzel ein bisschen durchlässiger machen. Die Hyphe wächst dann innerhalb der Zellen der Pflanzenwurzel und bildet dort stark verzweigte Strukturen. Dadurch haben Pilzhyphe und Pflanzenzellen eine große Oberfläche zur Verfügung, über die sie nun die besagten Stoffe austauschen können. So brutal der ganze Vorgang klingt, die Pflanze nimmt den Pilz bereitwillig auf, sie organisiert sogar die Zellen um, in die der Pilz vorgedrungen ist, um das Meiste aus der Partnerschaft zu machen.

Klingt doch alles ganz toll, oder? Der Pilz tut der Pflanze doch einen Gefallen? Jein. So bereitwillig die Pflanze ihre äußeren Wurzelzellen für den Pilz einrichtet, so sehr muss sie Strukturen weiter innen vor ihm schützen. In der Mitte der Pflanzenwurzel liegt der sogenannte Zentralzylinder, durch den die Pflanze Wasser und Nährstoffe
transportiert – quasi die Blutbahn der Pflanzen. In die würde der Pilz zu gerne eindringen, um direkt an die Zuckerlösung zu kommen, die ihm die Pflanze im Rahmen der Mykorrhiza nur rationiert zukommen lässt. Doch dagegen wehrt sich die Pflanze, indem sie Lignin, den „Holzstoff“, in die Zellen einlagert, die den Zentralzylinder umgeben. Damit weist die Pflanze den Pilz in seine Schranken und erhält die Partnerschaft halbwegs freundlich und zum gegenseitigen Nutzen.

Doch das Lignin schützt nicht vor allen Pilzen! Eine Pflanze geht nämlich nicht nur mit einem Pilz so eine Verbindung ein, sondern meist mit mehreren. Genauso interagiert ein- und derselbe Pilz mit mehreren Pflanzenpartnern. Die beiden führen also eine sehr, sehr offene Beziehung. Der Vorteil davon: Die Mykorrhiza vernetzt mehrere Pflanzen miteinander, die so auch untereinander kommunizieren und Stoffe austauschen können. Außerdem kann die Pflanze von den unterschiedlichen Eigenschaften verschiedener Pilze profitieren (und umgekehrt). Der Nachteil: Pilze, die es gar nicht so gut meinen, können sich unter den echten Symbiosepartnern einschleichen. Die nehmen genauso Kontakt auf wie die „guten“ Pilzpartner, saugen dann aber schamlos Zucker aus der Pflanze, ohne etwas dafür zurückzugeben. Noch schlimmere Zeitgenossen unter den Pilzen tun ebenfalls so, als wollten sie eine Mykorrhiza bilden, wachsen dann aber tief in die Wurzel und schaffen es, in den Zentralzylinder vorzudringen, von wo aus sie sich in der gesamten Pflanzen verbreiten, diese von innen durchwuchern und förmlich auffressen. Nett, oder? Immerhin gibt es einige Pflanzen, die ein bisschen Rache nehmen: Sie bilden Mykorrhizzen und lassen sich gemütlich mit Mineralstoffen beliefern, knausern aber kräftig mit dem Zucker. Einige Orchideenarten sind da gut drin. Ein bisschen Gerechtigkeit muss sein.

Verlassen wir das Pflanzenreich und begeben uns zu den Tieren (darauf habt ihr doch nur gewartet!). Wenn man „Pilze“ hört, denkt man meist erstmal an Basidiomyzeten. Woran bitte? Ok, das Wort „Basidiomyzeten“ (zu Deutsch „Ständerpilze“ – haha, ich weiß) kommt wohl nur Wenigen in den Sinn. Eher hat man ein Bild von einem netten Pilz zwischen Moos und Laub vor Augen, vielleicht sitzt da noch ein Heinzelmännchen drauf. So ein Pilz ist, wie schon erwähnt, das Fortpflanzungsorgan, der sogenannte „Fruchtkörper“ eines Basidiomyzeten. Es gibt aber noch massenhaft andere Pilzarten, die nicht diese uns wohlbekannten Fruchtkörper bilden. Die haben entweder ganz anders aussehende oder gar keine spezialisierten Fruchtkörper. Das unterirdische Myzel-Netzwerk ist ihnen aber fast allen gemein. Doch lange nicht jeder Pilz ist so freundlich, sein Myzel friedlich im Waldboden zu bilden. Manche wachsen innerhalb von Insekten. Oder Menschen.

Da hätten wir zum Beispiel Ophiocordyceps unilateralis, eine parasitische Pilzart, deren Sporen auf den Panzern von Ameisen auskeimen und dann in den Körper der Ameise hineinwachsen. Dort befällt der Pilz das Nervensystem der Ameise und manipuliert ihr Verhalten. Die Ameise hört auf, für ihre Kolonie zu arbeiten und macht sich stattdessen auf den Weg zu einem Blatt oder der Baumrinde – sie wird zum willenlosen Zombie, der nur noch dem Pilz dient. Bei Blatt oder Rinde angekommen, beißt die Ameise sich fest und stirbt. Der Pilz bildet nun einen keulenförmigen Fruchtkörper, der aus dem Hirn der Ameise herauswächst wie eine kleine Antenne. In dem untenstehenden Video, einem Ausschnitt aus der englischen BBC-Serie Planet Earth, seht ihr das Ganze in Echt. Ophiocordyceps unilateralis hat mit dieser gruseligen Fortpflanzungsstrategie schon Computerspiele und Science-Fiction-Romane inspiriert.

Zombie-Ameisen sind schon ein bisschen gruselig, aber irgendwie auch faszinierend. Wenn so ein Pilz allerdings in uns Menschen wächst, hört der Spaß auf. Ausgerechnet ein Vertreter der Hefepilze kann uns mächtig zu schaffen machen. Ein bestimmter Hefepilz, die Bierhefe, auch Bäckerhefe genannt, ist dem Menschen seit Jahrtausenden zu Diensten. Auch in der Wissenschaft wird dieser Hefepilz sehr verbreitet genutzt. Auf Schlau heißt diese Pilzart Saccharomyces cerevisiae. Gebäck und Gesöff – wer wollte ohne sie leben? Allerdings findet man selbst im Weißbier keine Myzel-Netzwerke, höchstens ein bisschen pudrigen Bodensatz. Das liegt daran, dass Hefepilze oft kein Myzel bilden, sondern als einzelne, winzige Pilzzellen durch die Gegend schwimmen. Auch Nicht-Hefepilze (wie die erwähnten Ständerpilze) bilden in manchen Lebensstadien einzelne Zellen, die dann zu Ehren der einzelligen Hefen als „Hefestadium“ oder „Hefeform“ bezeichnet werden.

Doch bei Weitem nicht alle Hefen finden ihre Erfüllung darin, uns Menschen mit Gebäck und Gesöff zu versorgen. Ein ziemlich gemeiner Vertreter der Hefepilze ist die Gattung Candida, vor allem die Art Candida albicans. Und ich habe eine schlechte Nachricht: Diesen Pilz tragen etwa 70 bis 75 Prozent von uns in sich. Die gute Nachricht: Meistens ist er harmlos. Meistens.

Candida albicans lebt bei gesunden Menschen im Darm und auf Schleimhäuten im Gleichgewicht mit all den anderen Mikroorganismen, die sich dort tummeln, etwa Milchsäurebakterien. Gerät das Gleichgewicht aber aus der Balance, kann der Pilz die Überhand bekommen und zu einer Erkrankung werden. Das kann etwa passieren, wenn man eine Antibiotikatherapie macht. Dabei werden nämlich nicht nur die krankmachenden Bakterien abgetötet, sondern alle Bakterien, die man im Körper trägt, auch die guten. Darauf hat der Pilz gewartet – die Milchsäurebakterien, die mit ihm um Platz und Nahrung konkurrieren, sind weg, und los geht’s mit der Pilzinfektion! Candida kann im Prinzip den ganzen Körper befallen, häufig sind die Mundhöhle (das nennt man dann „Soor“) und der weibliche Genitalbereich.

ACHTUNG! Das heißt NICHT, dass Antibiotikatherapien automatisch schlecht sind! Oft sind sie die letzte Rettung, denn auch Bakterieninfektionen können sehr gefährlich sein für Leib und Leben! Wenn ihr Antibiotika verschrieben bekommt, nehmt IMMER die ganze Packung bis zum Ende, genau, wie eure Ärztin oder euer Arzt es verschrieben hat! Auch, wenn es euch schon eher besser geht. Sonst züchtet ihr multiresistente Bakterien in eurem Körper, die ihr womöglich nie wieder loswerdet! (Ok, der Belehrungsmodus geht jetzt wieder aus)

Ein Tip für die Mädels: Wenn ihr wisst, dass ihr während einer Antibiotikakur zu Scheidenpilz neigt, kauft in der Apotheke Milchsäurezäpfchen (ja, für die Mumu). Die helfen dabei, die Scheidenflora bakterienfreundlich zu halten und können so einer Pilzinfektion entgegenwirken.

Solche oberflächlichen Pilzinfektionen sind trotzdem noch vergleichsweise harmlos und meist gut zu behandeln. Candida ist allerdings auch dazu in der Lage, in die Blutbahn vorzudringen und von da aus den gesamten Körper von innen zu befallen. Daran kann man sterben. Das passiert unter normalen Umständen nicht oft. Wer ab und zu Fußpilz hat, muss also keine Angst haben. In Krankenhäusern ist Candida allerdings oftmals ein Problem, da vor allem sehr geschwächte Personen anfällig sind für so eine systemische Pilzinfektion – Candida steht inzwischen auf Platz vier der gefährlichsten Krankenhauskeime.

Jetzt muss ich die Behlerungskeule doch noch mal rausholen: Solltet ihr eine Pilzinfektion haben, probiert bitte nicht mit Hausmitteln oder Homöopathie herum, sondern geht sofort zum Arzt. Der wird euch antimykotische Arzneimittel verschreiben, die den Pilz meist innerhalb weniger Tage ausmerzen. So lange kann selbst der überzeugteste Anhänger des Paläo-Lifestyles ein paar künstlich hergestellte chemische Stoffe aushalten. Je länger der Pilz wuchert, desto höher ist nämlich die Wahrscheinlichkeit, dass er doch seinen Weg in die Blutbahn findet. Und dann geht man wirklich ganz authentisch den Weg des ach-so-natürlich lebenden Höhlenmenschen, der seinerzeit an heutzutage völlig harmlosen Infektionen meist starb.

Wir Menschen können leider wenig nutzen aus Pilzen ziehen, die in unseren Körper eindringen, so wie Pflanzen das können. Wir können nur über das Pilzreich triumphieren, indem wir einige seiner Vertreter aufessen.

Tuberkulose, Pest und Cholera – alles eine Frage der Faltung

File:Yersinia pestis Bacteria.jpg
Der Erreger der Pest, Yersinia pestis, (gelb) auf einem Floh (violett). Raster-elektronenmikroskopische Aufnahme, nächträglich eingefärbt. (Foto: National Institute of Allergy and Infectious Diseases, USA)

Während es mit der Karriere der Pest seit dem 14. Jahrhundert rapide bergab ging, stellen Cholera und vor allem Tuberkulose die Welt noch immer vor große Probleme. Dank der vereinten Mühen von Forscherteams aus Bochum, Leipzig und Braunschweig verstehen wir jetzt besser, wie die Bakterien, die diese Krankheiten verursachen, ihren Angriff auf unser Leib und Leben starten.

Wenn es in unserem Körper demokratisch zuginge, hätten wir jeden Tag Stichwahl: Etwa 40 Billionen (eine 4 mit 13 Nullen) eigene Körperzellen besitzen wir – und etwa genausoviele Bakterien tummeln sich auf unserer Haut, unseren Schleimhäuten und im Darm. Eklig? Keineswegs! Ohne Bakterien könnten wir nicht überleben: Sie wehren Krankheitserreger ab und helfen uns bei der Nahrungsverdauung. Da sie viel kleiner sind als unsere eigenen Körperzellen, fallen sie uns (zum Glück) nicht weiter auf. Aber wehe, eine nicht so wohlmeinende Bakterienzelle dringt ein!

Zu den fiesesten Vertretern der bakteriellen Krankheitserreger gehören Yersinia pestis, Yersinia pseudotuberculosis und Vibrio cholerae – die Namen sind Programm. Die Pest weckt heutzutage höchstens noch geistige Bilder von gruseligen mittelalterlichen Gemälden – sie ist inzwischen relativ harmlos und gut behandelbar. Tuberkulose und Cholera sorgen aber nach wie vor für hohe Todeszahlen, vor allem in ärmeren Ländern mit schlechter Trinkwasserversorgung. Um diese Krankheiten bekämpfen zu können, hilft es ungemein, zu verstehen, wie die Bakterien sie auslösen.

Das haben Forscher um Franz Narberhaus von der Ruhr-Uni Bochum jetzt zumindest teilweise aufgeklärt: Yersinia pestis, Yersinia pseudotuberculosis und Vibrio cholerae enthalten “molekulare Thermometer”. Einfach gesagt sind das Moleküle, die bei kühleren Temperaturen anders aussehen als bei höheren. Dringen die Bakterien in unseren Körper ein, erwärmen sie sich schnell auf unsere Körpertemperatur, also 37 °C. Die Thermometer-Moleküle ändern daraufhin ihre Gestalt und das ist das Angriffssignal – die Pest bricht in uns aus!

Wie funktioniert das genau? Bei den Thermometer-Molekülen handelt es sich um RNA. Das sind Kopien von Genen, die auf der DNA liegen. Die Gene auf unserer DNA stellen Baupläne für Proteine dar. So ein Bauplan darf aber nicht im Original, also als Gen selbst, verwendet werden, sondern es wird eine Kopie gemacht, eben die RNA. Der Bauplan auf der RNA wird von einem Enzym abgelesen, das nach dieser Info dann das Protein herstellt. Dabei kann eine RNA hunderte Male hintereinander abgelesen werden, um viele Exemplare eines Proteins herzustellen. Dasselbe passiert auch in den Bakterien, wenn sie Krankheiten auslösen: Die Bakterien brauchen die Proteine, die so hergestellt werden, um unseren Körper zu befallen. Die RNA für diese Proteine kann nun in zwei Zuständen vorliegen: offen und bereit für die Proteinproduktion oder zusammengefaltet und damit unzugänglich für das Enzym, das sie abliest. Und ihr habt es sicher schon erraten, bei Temperaturen um die 37 °C ist die RNA offen, bei niedrigeren Temperaturen ist sie zusammengefaltet. So wird das Bakterium erst so richtig aktiv, nachdem es in unseren Körper gelangt ist. Die Faltung erfolgt durch Verbindungen, die einzelne Wasserstoffatome innerhalb der selben RNA miteinander schließen. Bei höheren Temperaturen werden diese Verbindungen instabil und die RNA schmilzt regelrecht auf.

Die Frage aller Fragen: Kann man das für Medikamente benutzen? Zwei Antworten: “Ja” und “Noch nicht”. Prinzipiell ist es nicht schwierig, Wirkstoffe herzustellen, die das Aufschmelzen der RNA verhindern und damit die Bakterien zur Untätigkeit zwingen. Das Problem ist jedoch, diese Wirkstoffe halbwegs gezielt durch den Körper zu den Bakterien zu bringen. Und dann müssen sie ihn auch noch aufnehmen. Das ist gar nicht so einfach, eine Bakterienzelle – so wie alle Zellen aller Lebwesen – nehmen nicht einfach so irgendeinen Stoff auf, der gerade vorbeischwimmt. Er könnte ja giftig sein. Was in diesem Fall genau der Zweck wäre. Aber um herauszufinden, wie man die Bakterien so auszutricksen kann, dass die so ein Medikament aufnehmen, müssen Wissenschaftler noch ein bisschen weiterforschen. Immerhin, ein Anfang ist gemacht!

Für die Streber unter uns gibt es hier die Original-Publikation (leider nur, wenn man registriert ist): www.pnas.org/content/early/2016/06/10/1523004113.abstract
Righetti F, et al. Proc Natl Acad Sci USA. (2016 Jun 13)

Die dunkle Seite der Mikrobiologie

Pseudomonas aeruginosa  Photo Credit: Janice Haney Carr Content Providers(s): CDC/ Janice Haney Carr - This media comes from the Centers for Disease Control and Prevention's Public Health Image Library (PHIL), with identification number #10043.Wir haben ein Problem und es wird schlimmer – multiresistente Bakterien. In den Nachrichten hört man immer wieder davon, sie werden „multiresistente Keime/ Erreger“, manchmal auch „multiresistente Krankenhauskeime“ genannt. Dabei handelt es sich um Bakterien, die nicht mehr durch Antibiotika bekämpft werden können. Solche Bakterien können sich zum Beispiel in offenen Wunden ansiedeln und deren Heilung verhindern. Auch unter Erregern von Tuberkulose, Durchfall und Lungenentzündung sind bereits multiresistente Erreger (MRE) aufgetaucht. Besonders häufig hört man dieser Tage von Pseudomonas aeruginosa, einem Krankenhauskeim, der 10 % aller Krankenhausinfektionen verursacht. Dieses Stäbchenbakterium ruft unter anderem Harnwegsinfektionen, Dickdarm- oder Hirnhautentzündungen hervor. Besonders Menschen mit schwachem Immunsystem, z.B. Kinder und ältere Leute oder Menschen mit Vorerkrankungen sind anfällig für die Infektion mit einem solchen MRE. Doch wie konnte es dazu kommen, dass Bakterien immun sind gegen fast jedes bekannte Antibiotikum? Und was können wir auf lange Sicht dagegen tun?

Antibiotika (die Einzahl lautet übrigens „Antibiotikum“) sind Stoffe, die Bakterien (und nur Bakterien – keine Viren!) abtöten können. Sie kommen vielfach in der Natur vor, da sie meistens von Bakterien oder Pilzen produziert und ausgeschieden werden. Die Bakterien und Pilze nutzen sie, um andere Mikroorganismen in ihrer Umgebung in Schach zu halten und möglichst viele Nahrungsquellen für sich zu behalten. Das allererste Antibiotikum, das von einem Wissenschaftler entdeckt wurde, war das Penicillin. Es wird von einem Schimmelpilz namens Penicillium hergestellt. Bereits 1893 konnte Bartolomeo Gosio Penicillin aus dem Pilz gewinnen. Seine Ergebnisse blieben jedoch unbekannt. 1897 veröffentlichte der französische Militärarzt Ernest Duchnese seine Doktorarbeit, in der er beschrieb, dass die Stallknechte im Militärhospital die Sättel der Pferde in einem dunkeln, feuchten Raum aufbewahrten, um die Bildung von Schimmel auf den Sätteln zu fördern. Auf die Frage, warum sie dies täten, antworteten die Stallknechte, dass die wunden Stellen auf den Rücken der Pferde dadurch besser heilten. Duchnese injizierte daraufhin einem Meerschweinchen, das er zuvor mit Typhus infiziert hatte, den Schimmelpilz. Das Meerschweinchen wurde vollkommen gesund.

Seit der Entdeckung des Penicillins wurde viele andere Antibiotika gefunden und jahrzehntelang erfolgreich zur Krankheitsbekämpfung eingesetzt. Doch damit begann auch das Problem. Die DNA von Bakterien verändert sich ständig durch zufällig auftretende Mutationen. Dabei kann es passieren, dass ein Gen entsteht, dass das Bakterium resistent macht gegen ein bestimmtes Antibiotikum. Wenn dieses Bakterium nun zum Beispiel an den Mandeln eines Patienten sitzt, der dieses Antibiotikum einnimmt, wird es nicht sterben. Stattdessen kann es sich rasant vermehren und so den Patienten zu einer Quelle eines resistenten Erregers machen. Von ihm aus kann es sich auf andere Menschen verbreiten.
Auch die Unzuverlässige Einnahme von Antibiotika kann resistente Keime erzeugen. Wenn man frühzeitig aufhört, das verschriebene Antibiotikum einzunehmen, weil man sich besser fühlt, wurden womöglich nicht alle Keime abgetötet. Die noch lebenden Keime können dann Resistenzen entwickeln.
Ein bedeutender – vielleicht der bedeutendste – Faktor heutzutage ist die massenhafte Verabreichung von Antibiotika an Tiere in Schlachthöfen. Damit will man verhindern, dass die Tiere krank werden. Würde ein Tier in Massenhaltung krank, könnte sich die Krankheit durch den engen Kontakt mit seinen Artgenossen rasend schnell in der ganzen Anlage verbreiten. Das will man verhindern und so gibt man extrem hohe Dosen Antibiotika. Wenn wir das Fleisch dieser Tiere essen, nehmen wir die Antibiotika auf und erschaffen dadurch in unserem Körper eine Brutstätte für Keime, die sich nun anpassen und Resistenzen entwickeln müssen.

Was kann die Wissenschaft tun, um diese verheerende Entwicklung aufzuhalten? Eine Abschaffung der Massentierhaltung wäre natürlich wünschenswert, würde aber lange dauern – zu lange. Also müssen schnell neue Antibiotika her. Da man diese aus Bakterien in der Natur gewinnt, könnte man einfach neue Bakterien suchen. Das hat man auch getan. Und festgestellt, dass sie nur Antibiotika herstellen, die schon auf dem Markt sind.
Man nimmt sogar an, dass man alle Bakterien, die sich im Labor kultivieren lassen, bereits kennt. Doch das sind nur etwa 1 % aller bekannten Bakterien! Die restlichen 99 %, die „dunkle Seite“, lassen sich nicht im Labor halten. Wenn man sie auf einem Nährboden versucht zu kultivieren, sterben sie. Was tun? Nun, wenn der Prophet nicht zum Berg kommt, muss der Berg eben zum Propheten kommen, nicht wahr! Die Mikrobiologen Slava Epstein und Kim Lewis haben eine Apparatur erfunden, mit der man Bakterien direkt in der Natur kultivieren kann. Kleine Kammern, die mit einer porösen Membran abgedeckt werden, werden in den Boden eingelassen. Die Poren in der Membran sind so klein, dass nur Bakterien hindurchpassen. Bakterien aus dem Boden können in die Kammern einwandern und dort wachsen. Nach etwa zwei Wochen „erntet“ man die Bakterien und untersucht, ob sie unbekannte Antibiotika produzieren.
Einige kleine Erfolge gab es bereits. Zwei neue Antibiotika namens lassomycin und Teixobactin wurden gefunden. Beide wirken gegen Tuberkulosebakterien und kein untersuchtes Bakterium zeigte Resistenz gegen Teixobactin.

Es besteht also Hoffnung. Dennoch geht die Suche sehr langsam voran und niemand kann vorhersagen, wie schnell neue resistente Keime auftauchen, denen auch die neuen Antbiotika nichts mehr ausmachen. Wer weiß, vielleicht brauchen wir eine ganz neue Herangehensweise in der Bekämpfung von bakteriellen Krankheiten. Ich bin neugierig, was den Wissenschaftlern einfällt und halte euch auf dem Laufenden!