Tag: Krebs

Von der Schrotflinte zum Präzisionsgewehr (mit Laser und Zielfernrohr)

CRISPR-Cas9Morgen wird verkündet, wer den Nobelpreis für Chemie bekommt. Und CRISPR-Cas9, die “Genschere” steht ganz hoch im Kurs. Aber was hat es damit auf sich – und warum verdient die Technik einen Nobelpreis?

Mit CRISPR-Cas9 können Wissenschaftler erstmals ganz gezielt und mit hoher Erfolgsrate Mutationen herstellen. Warum wollen wir das? Beim Wort “Mutation” denkt man ja meist erstmal an Monster oder die X-Men oder sowas. Mutationen sind aber meist ganz unspektulär: Es sind schlichtweg Veränderungen in Genen, die mal gute, mal schlechte, mal gar keine Effekte auf den Körper haben. Ist ein Gen mutiert, so funktioniert das Protein, dessen Bauplan in dem Gen gespeichert ist, nämlich möglicherweise anders oder gar nicht mehr. Im Labor macht man sich darum Mutationen zu Nutze, um die Funktion eines Gens herauszufinden. Man schaltet das Gen also aus und schaut dann, was im Organismus nicht mehr funktioniert. Daraus kann man dann Rückschlüsse auf die Funktion des Gens und des von ihm codierten Proteins schließen. Im Prinzip kann man sich diese Vorgehensweise vorstellen wie eine Maschine, bei der man ein Teil ausbaut und dann guckt, was an der Maschine nicht mehr funktioniert.

Gene sind allerdings ziemlich klein und darum sehr schwierig “auszubauen”. In der Vergangenheit war das ein größeres Problem – es war praktisch unmöglich, ein bestimmtes Gen gezielt auszuschalten. Begeben wir uns also auf eine kleine Zeitreise:

Ab den 1920er Jahren – die Schrotschuss-Methode

Flinte: Ve1wab, Creative Commons License CC BY-SA 4.0

 

Damals haben Wissenschaftler Zellen mit mutagenen (=Mutationen erzeugenden) Chemikalien oder UV-Licht behandelt und gehofft, dass dabei ein interessantes Gen beschädigt wird. Das ist so ähnlich, als ob man aus einer Dosenpyramide genau eine Dose herausschießen will, aber leider nur ein Schrotgewehr zur Verfügung hat. Dementsprechend dauerte es oft Jahre, ehe man eine interessante Mutation erzeugt hatte. Es ging aber auch gar nicht anders, denn man wusste damals noch nicht, welche oder wieviele Gene das Lebewesen, mit dem man da als Wissenschaftler arbeitete, überhaupt hatte. Von der vollständigen DNA-Sequenz des Lebewesens konnte man nur träumen – die Struktur der DNA war ja nicht einmal bekannt. Man wusste gerade eben, dass Gene existierten und dass sie erbliche Eigenschaften von Lebewesen bestimmen. Das wars. Wenn man also die Dosenpyramide nicht sieht, kann man eben einfach nur in die ungefähre Richtung schießen und das beste hoffen.

Ab den 1980er Jahren – der Federball

Der Federball
Später konnte man dann etwas gezielter vorgehen, mithilfe der “homologen Rekombination”, die funktioniert so (siehe auch Abbildung weiter unten): Forscher stellen ein relativ kurzes Stück DNA her, das dem Gen, das sie mutieren wollen, vollkommen gleicht – mit einem wichtigen Unterschied: Es enthält die Mutation, die die Forscher in dem gewünschten Gen erzeugen wollen. Entscheidend sind die sogenannten “Homologie-Arme”. Dort ist die Sequenz der hergestellten DNA exakt dieselbe wie im ursprünglichen (“Wildtyp”-)Gen, das sich in der DNA der Zelle oder des Lebewesens befindet, das die Wissenschaftler erforschen. So kann man also ganz gezielt entscheiden, wo die Mutation stattfinden und wie sie aussehen soll. Die hergestellte DNA mit der gewünschten Mutation bringen die Forscher nun in die Zelle oder das Lebewesen ein. Mit den Homologie-Armen kann die hinzugefügte DNA in die Wildtyp-DNA eindringen und einen der beiden ursprünglichen DNA-Stränge verdrängen. Der Vorgang heißt dementsprechend auch “Strang-Invasion”. Der verdrängte, ursprüngliche Strang wird abgebaut und der noch vorhandene Wildtyp-Strang wird so verändert, dass er nun zu dem mutierten Strang passt. Voilà, die Mutante ist perfekt.

die homologe Rekombination

Wenn es denn klappen würde. Dass der hergestellte Strang tatsächlich in die Wildtyp-DNA eindringt, ist nicht gesagt. Wenn man richtig viel Glück hat, klappt es nach 200 Versuchen – mit Pech allerdings erst nach 100.000 Versuchen. Warum ich es “Federball” nenne? Mit einem Federball kann man ziemlich gezielt auf eine bestimmte Dose werfen, aber der Federball ist auch so leicht, dass er die Dose oftmals nicht umschmeißt.

Seit 2015: Das High-Tech-Präzisionsgewehr

Gewehr: Tactical Operations Inc., Creative Commons License CC BY-SA 4.0

Nun gibt es endlich eine Lösung für fast alle Mutagenese-Probleme: CRISPR-Cas9. Und das hat sich die Natur ganz alleine ausgedacht. Es ist eigentlich das “Immunsystem” bestimmter Bakterien. Die erkennen eindringende Viren und haben ein Enzym, nämlich Cas9, mit dem sie die DNA des Eindringlings kurzerhand zerschneiden. Wie erkennen sie den Eindringling? Dafür gibt es bestimmte kurze RNAs in den Bakterienzellen, die dieselbe Sequenz habe wie die DNA des Virus. Die kurze RNA lagert sich an die Viren-DNA an. Sie hat außerdem ein “Schwänzchen”, das dann Cas9 anlockt. Schließlich schneidet Cas9 die von der kurzen RNA markierte Viren-DNA einfach kaputt. Aufgrund ihrer Eigenschaft, Cas9 zu seinem Einsatzort zu leiten, wurde diese RNA “short guide RNA”, kurz sgRNA genannt. Und dieses System aus sgRNA und DNA-Schneideenzym hat man schlichtweg für die Anwendung im Labor angepasst. Die sgRNA kann man so gestalten, das sie eine beliebige, genau definierte Stelle in der DNA jedes beliebigen Lebewesens erkennt und Cas9 dorthin dirigiert. Cas9 schneidet dann dort die DNA kaputt. Darauf reagiert die Zelle, indem sie die DNA repariert, allerdings fast immer ungenau. Bei dieser Reparatur werden entweder ein paar Basenpaare der DNA  gelöscht oder einige hinzugefügt – es entsteht also eine Mutation genau da, wo man sie haben will. Im Idealfall mit einer Erfolgsrate von 100 %. Doch CRISPR-Cas9 kann noch mehr: Es erhöht die Erfolgsrate der homologen Rekombination nämlich extrem. Die Zelle ist viel eher geneigt, eine von außen zugegebene DNA einzubauen, wenn die entsprechenden Stelle in der Wildtyp-DNA kaputt ist. So kann man die DNA also gezielt aufschneiden und der Zelle auch gleich eine Vorlage für die Reparatur anbieten, die sie meist dankbar annimmt. Auf diese Weise kann man lange DNA-Abschnitte, sogar ganz neue Gene in Zellen einbringen.

Die Anwendungsmöglichkeiten sind gewaltig – im Labor lassen sich die Aufgaben von Genen und Proteinen viel schneller erforschen und in der Biotechnolgie kann man Bakterien genetisch so verändern, dass sie noch effizienter wichtige Stoffe wie Insulin herstellen. Eines Tages können wir die Technik vielleicht sogar in der Gentherapie einsetzen, um Krebs und andere Krankheiten zu heilen. Doch auch die Kehrseite muss man betrachten – wenn die Technik extrem viel weiterentwickelt wird, könnte man damit eines Tages Dinge genetisch verändern, die nicht unbedingt notwendig sind. Kritiker fürchten, dass wir bald “Designerbabys” herstellen. Dafür wissen wir aber noch viel, viel zu wenig darüber, wie unsere DNA funktioniert, das ist also sicherlich ferne Zukunftsmusik.

Nicht ganz so fern ist die Verkündung des Nobelpreisses – morgen wissen wir mehr. Dann wird vielleicht die spannende Frage beantwortet, wen das Nobelkommittee für die wichtigsten Wegbereiter von CRISPR-Cas9 hält, über diese Frage flogen nämlich in den letzten Monaten die Fetzen. Ich bin gespannt.

Wir basteln mit DNA

http://cdn.medgadget.com/img/daanbox.jpg
aus: Andersen et al., Nature 2009

Wer jetzt an Genmanipulation denkt, liegt ausnahmsweise falsch. Heute geht es buchstäblich ums Basteln – DNA Origami. Das gibt es wirklich und man kann unglaubliche Dinge damit anstellen.

Alles begann 2006, als der Computerwissenschaftler Paul W. K. Rothemund einen Artikel in der Zeitschrift Nature veröffentlichte, in dem er beschrieb, wie man aus DNA zwei- und dreidimensionale Objekte formen kann. Oder eher, wie man die DNA designen muss, damit sie sich selbstständig zu Objekten formt.

Die Grundlage für dieses Phänomen ist die Bindung zwischen den sogenannten DNA-Basenpaaren. Es gibt vier Basen, Adenin, Thymin, Guanin und Cytosin. Kurz werden sie einfach mit den Buchstaben A, T, G und C abgekürzt. Sie sind die Zeichen des genetischen Codes. Der genetische Code speichert die Information darüber, wie ein bestimmter Organismus aufgebaut ist, zum Beispiel eine Rose, ein Hund oder ein Mensch. Die DNA ist also der Bauplan für ein Lebewesen. Der Bauplan fürs Billy-Regal bei Ikea ist in Form von Bildern codiert, aus denen man ablesen kann, wie man Billys Teile zusammensetzen muss. In der DNA ist die Information eben auf chemische Weise codiert, in Form der vier Basen. Diese können in beliebiger Kombination tausend- und millionenfach hintereinander vorkommen, das nennet man eine Basensequenz. Nun ist DNA aber nicht ein einzelner Strang aus Basen sondern ein Doppelstrang. Zwei Basenstränge „kleben“ sozusagen aneinander. Dabei steht einem A immer ein T und einem G immer ein C gegenüber, so wie hier:

DNAseq

Das nennt man Basenpaarung, und das macht DNA sehr gerne. Wenn man die beiden hier abgebildeten DNA-Stränge trennen (zum Beispiel durch Erhitzen) und gemeinsam in eine wässrige Lösung geben würde, fänden sie von selbst schnell wieder zusammen, wenn die Lösung abkühlt. DNA ist lieber doppel- als einzelsträngig, wenn der passende „spiegelbildliche“ Strang vorhanden ist. Und diese Vorliebe der DNA macht man sich beim DNA-Origami zu Nutze. Mithilfe von leistungsfähigen Computerprogrammen kann man DNA-Stränge entwerfen, die sich auf bestimmte Weise miteinander verbinden. Das funktioniert so:

Es gibt einen langen Einzelstrang, den Gerüststrang. Zusätzlich gibt es viele kurze Verbindungsstränge, die mit einer Hälfte einen Teil des Gerüststrangs binden und mit ihrer anderen Hälfte einen anderen Teil – so zwingen die Verbindungsstränge den Gerüststrang in eine bestimmte Form. Ungefähr so:

origami

Das lange Stück DNA oben ist der Gerüststrang, die zwei kurzen, farblich markierten darunter stellen die Verbindungsstränge dar. Die Basen, mit denen die Verbindungsstränge eine Basenpaarung eingehen, sind im Gerüststrang ebenfalls farblich markiert. Wenn man diesen Gerüststrang mit diesen beiden Verbindungssträngen vermischt, kommt danach so etwas heraus wie im unteren Teil des Bildes.

Das ist natürlich nur ein Beispiel, sogar ein ziemlich primitives. Wenn man sich nämlich geschickt anstellt, kann man aus DNA solche Formen basteln:

DNAorigami
Paul W. K. Rothemund, Nature 2006

Das ist schon ziemlich cool, aber der wahre Nutzen liegt in der Erschaffung dreidimensionaler Strukturen. Wissenschaftler vom Wyss Institute for Biologically Inspired Engineering (“Institut für biologisch inspirierte Werkstoffe”) an der Uni Harvard haben eine Art Tonne aus DNA erschaffen, die an einer Seite ein Scharnier hat. Diese Struktur arbeitet als biologischer Nanoroboter: Man kann die „Tonne“ mit verschiedenen Dingen füllen, wie zum Beispiel einem Medikament gegen Krebs. Im normalen Zustand ist die Tonne geschlossen. Eine Dosis dieser Medikamenten-gefüllten Nanoroboter kann einem Krebspatienten verabreicht werden. Die Nanoroboter gelangen mit dem Blutstrom zu allen Körperzellen – doch nur, wenn sie mit einer Krebszelle in Kontakt kommen, öffnen sie sich und geben die Medikamente frei. So werden gesunde Zellen nicht angegriffen und Krankheiten können sehr effizient und mit wenig Nebenwirkungen behandelt werden.

Oben: Querschnitt durch die Tonnenform des DNA-Nanoroboters. Unten: Der Nanoroboter im geöffneten Zustand. (aus: Shawn M. Douglas et al., Science 2012)
Oben: Querschnitt durch die Tonnenform des DNA-Nanoroboters. Unten: Der Nanoroboter im geöffneten Zustand. (aus: Shawn M. Douglas et al., Science 2012)

Wir verstehen immer besser, wie DNA funktioniert und finden immer mehr kreative Anwendungen für dieses vielseitige Molekül. Durch ihre Codierungsfunktion kann DNA auf bestimmte Funktionen programmiert werden. Ein winziger Roboter, der sich selbst zusammenbaut und ohne jegliches Metall auskommt. Wahnsinn! Ich bin sehr gespannt, wann wir die ersten DNA-Nanoroboter in der Anwendung sehen. Bis jetzt ist das alles noch im Test, aber es sieht sehr gut aus für die klinische Anwendbarkeit dieser Technik. Und keine Angst, fremde DNA wird nicht ins menschliche Genom eingebaut – schließlich essen wir täglich Unmengen DNA und verwandeln und trotzdem nicht langsam in eine Banane oder ein Hühnchen.

Alt aussehen, jung bleiben

naked mole-rat
Foto: National Geographic

Welches ist das hässlichste Säugetier der Welt? Genau, der Nacktmull. Entdeckt wurde er 1842 in Afrika von dem deutschen Wissenschaftler Eduard Rüppell, der annahm, das von ihm gefangene Exemplar sei ein altes, krankes Tier. Später stellte sich heraus, dass er sich geirrt hatte – die sehen immer so aus.

Der Nacktmull ist ein äußerst bemerkenswertes Tier, nicht nur, was sein Aussehen betrifft. So ein Nacktmull kann nämlich bis zu 30 Jahre alt werden. Dreißig! Das ist sehr alt für ein so kleines Nagetier. Nur zum Vergleich: Ratten, die etwa genauso groß sind, werden nur ca. 3 Jahre alt. Stachelschweine, die mit ca. 80 cm Körperlänge zu den größten Nagetieren gehören, können ein ähnliches Alter erreichen wie die Nacktmulle. Doch den Rekord hält immer noch ein Nacktmull, der im Alter von 31 Jahren starb. Das älteste Stachelschwein wurde nur 27.

Ein kleiner Exkurs: Warum werden große (Säuge-)Tiere im Allgemeinen älter als kleine Tiere? Das liegt am Verhältnis zwischen Körperoberfläche und Körpervolumen. Ein großes Tier hat im Vergleich zu seinem Volumen eine recht kleine Oberfläche. Je kleiner ein Tier ist, umso größer ist seine Körperoberfläche im Verhältnis zu seinem Körpervolumen. Und eine große Oberfläche ist ein Problem, weil sie viel Wärme abstrahlt. Die muss ersetzt werden, indem das Tier durch das verstoffwechseln von Nahrung Energie erzeugt. Wer Mäuse hält, oder Ratten oder Meerschweinchen, dem wird aufgefallen sein, dass diese Tiere eine hohe Herzfrequenz haben und sehr schnell atmen. Ein Mäuseherz schlägt ca. 670 mal in der Minute, ein Menschenherz nur 72 mal, Pferde bringen es auf 38 Herzschläge – und dem Blauwal reichen sechs Herzschläge pro Minute. So ein schneller Stoffwechsel sorgt aber auch dafür, dass die Zellen sich schnell abnutzen. So altert das Tier schneller und stirbt eher.

Nicht so jedoch der Nacktmull! Was ist sein Geheimnis? Nun, fangen wir mal beim Stoffwechsel an. Fast alle Säugetiere sind gleichwarm, das heißt, sie halten eine konstante Körpertemperatur aufrecht, egal, wie warm oder kalt es um sie herum ist. Der Mensch hat etwa eine konstante Temperatur von 37 °C. Der Nacktmull jedoch ist das einzige Säugetier, das dies nicht tut. Er ist so warm wie seine Umgebung, das nennt man „wechselwarm“. Reptilien und Amphibien, also z.B. Schlangen, Eidechsen und Frösche, sind ebenfalls wechselwarm. Bei niedrigen Temperaturen verlangsamt sich ihr Stoffwechsel. Und das ist auch schon eines der Geheimnisse des Nackmulls – wenn es kühl ist, schlägt sein Herz sehr langsam. Das spart Energie und verlängert das Leben.

Auch sein Verhalten passt der Nacktmull an die Temperatur an. Nacktmulle leben in unterirdischen Höhlensystemen, die die Tierchen mit ihren Zähnen graben. In so einem Bau leben durchschnittlich 75 Tiere zusammen. Wenn es kalt ist, begeben sie sich näher an die warme Oberfläche und kuscheln sich aneinander. So muss jeder seinen Stoffwechsel nicht allzusehr ankurbeln.

In diesen Höhlen ist allerdings der Sauerstoff zum atmen recht knapp. Die vielen Mulle, die da zusammenleben, atmen alle Sauerstoff ein und Kohlendioxid wieder aus, wie jedes atmende Tier. Das Kohlendioxid sammelt sich in den Höhlen und so atmen die Mulle auch viel Kohlendioxid ein. Das führt zur Übersäuerung des Blutes und das verursacht Schmerzen. Theoretisch. Doch ein Nacktmull kennt keinen Schmerz! Und zwar buchstäblich. Er hat schlichtweg keine Schmerzrezeptoren. Schmerz verursacht Stress und Stress verkürzt das Leben. Und durch die Übersäuerung des Blutes würde ein Mull ständig Schmerzen spüren. Tut er aber eben nicht, und so ist eine weitere Voraussetzung zu einem langen Leben erfüllt – kein Stress.

Ein weiterer möglicher Stressfaktor im Leben eines Tieres ist die Partnersuche. Konkurrenten verjagen, balzen, sich aufdringliche Partner vom Hals halten – alles Stress. Doch auch dafür hat der Nacktmull eine Lösung. Er ist das einzige Säugetier (schon wieder), das „eusozial“ lebt. Das heißt, dass nur ein Weibchen sich paart. Das ist die Königin, und nur ein bis drei Männchen aus der Gruppe paaren sich mit ihr. Die restlichen Mulle sind Arbeiter, die Futter suchen, Gänge graben – und sich nicht um Produktion und Aufzucht der Jungen sorgen müssen.

Nacktmulle bekommen auch keinen Krebs. Krebs wird bekanntermaßen durch die unkontrollierte Teilung bestimmter Zellen verursacht. Alle Säugetiere, auch Menschen, haben eingentlich einen Mechanismus, der diese unkontrollierte Zellteilung verhindert. Der Mechanismus gibt den Zellen einen Stopsignal, sobald alle Zellen eines Gewebes einander berühren – dann „weiß“ der Körper, dass genügend Zellen da sind. Dieser Mechanismus kann allerdings fehlerhaft sein oder durch spontane Mutationen ausgeschaltet werden. Der Nacktmull besitzt denselben fehleranfälligen Mechanismus. Aber er hat noch einen, der im Prinzip genauso funktioniert, aber anscheinend strenger ist und weniger leicht auszuschalten.

Ob all diese wunderbaren Eigenschaften des Nackmulls uns helfen können, Krebs zu besiegen und unglaublich alt zu werden, muss sich noch zeigen. Die Forschung läuft jedenfalls auf Hochtouren, das Genom des merkwürdigen Nagers wurde in den letzten Jahren vollständig entschlüsselt. Ich bin gespannt, was die Zukunft bringt. Jedenfalls sehe ich jetzt nicht mehr nur das abstoßende Äußere des Nacktmulls, sondern auch seine faszinierende Biologie.